3 research outputs found

    Digital Twin of a Network and Operating Environment Using Augmented Reality

    Full text link
    We demonstrate the digital twin of a network, network elements, and operating environment using machine learning. We achieve network card failure localization and remote collaboration over 86 km of fiber using augmented reality

    A biomechanical model of traumatic contusional injury produced by controlled cerebrocortical indentation in sheep

    Get PDF
    International audienceA biomechanical model of traumatic contusional injury was used to map axonal damage and neuronal reaction proximal and distal from the contusion. The model uses a precisely controlled and characterised dynamic indentation of the cerebral cortex of anaesthetised sheep. The indentation (16.15-16.50 mm deep; contact speed 1.2-1.24 m/s) is made through a 20 mm craniotomy in the frontal bone. The brain is then perfused-fixed after 6 hours and sectioned at 5 mm intervals. Immunohistochemistry was used to detect axonal injury and neuronal reaction. Quantitation of injury was by an automatic counting algorithm applied to micrographs of each entire section. These maps were cross-checked with manual counts. The injury was characterised by well-defined zones radiating from the impact point; these were a region of haemorrhagic and necrotic tissue, subadjacent penumbra of axonal injury, and distal multi-focal and diffuse areas of neuronal positivity. The model includes precise characterisation of the contact load and the pattern of injury. This will allow future finite element modelling to be used to explore quantitative relationships between several forms of neural damage and the dynamics of the tissue deformation in a finite element model of the insult

    Religion et Etat: bibliographie

    No full text
    corecore